If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2=3
We move all terms to the left:
4b^2-(3)=0
a = 4; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·4·(-3)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*4}=\frac{0-4\sqrt{3}}{8} =-\frac{4\sqrt{3}}{8} =-\frac{\sqrt{3}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*4}=\frac{0+4\sqrt{3}}{8} =\frac{4\sqrt{3}}{8} =\frac{\sqrt{3}}{2} $
| 4y+36-3y+15=3y-3 | | 3(u−15)−-4=10 | | 12y+25=-64 | | 2^(7-6x)=17 | | 6=2(y−7) | | 3/x+4=5/2x=25/6 | | 3a-13=7+7a | | 12x-12x+-24=3 | | -10=7+z | | 16x-3+8x+1=180 | | -8(8-x)=4/5(x+1) | | -8(8-x)=4/5(x+1- | | 3(x+7)^2-6=7 | | 16x-3+8x+9=180 | | 4y+8=6y-4 | | -9(8-x)=4/5(x+10) | | -10=7+z-2 | | t−7/3= 1 | | 1/4y+5=-12 | | 7x+3=7x=3 | | 6/y= 3 | | 2+10=4x | | x(0.05)=15.86 | | 2(f−5)=4 | | 1/6y-5=-18 | | q+1/2= 1 | | 29-7x=12+10x | | 7+5x=6x-77 | | 7w=3w+36 | | 2q+439=907 | | 5(3-x)+4=5x-11 | | 4=5−g |